Calculating the Probability of an Event (The Event-Composition Method)

The following steps are used in the event-composition method to find the probability of an event:

1. Define the experiment.
2. Visualize the nature of the sample points. Identify a few to clarify your thinking.
3. Write an equation expressing the event of interest, say \(A \), as a composition of two or more events, using unions, intersections, and/or compliments. (Notice that this equates point sets.) Make certain that event \(A \) and the event implied by the composition represent the same set of sample points.
4. Apply the additive and multiplicative laws of probability to the compositions obtained in step 3 to find \(P(A) \).

Example 1. Of the voters in a city, 40% are Republicans and 60% are Democrats. Among the Republicans 70% are in favor of a bond issue, whereas 80% of Democrats favor the issue. If a voter is selected at random in the city, what is the probability that he or she will favor the bond issue?

Solution. Define the following events:

- \(F \) : Favor the bond issue.
- \(R \) : A Republican is selected.
- \(D \) : A Democrat is selected.

Then \(P(R) = 0.4 \), \(P(D) = 0.6 \), \(P(F|R) = 0.7 \), and \(P(F|D) = 0.8 \). Note from the figure below that \(F = (F \cap R) \cup (F \cap D) \). Then
\[P(F) = P[(F \cap R) \cup (F \cap D)] = P(F \cap R) + P(F \cap D) \]

because \(F \cap R \) and \(F \cap D \) are mutually exclusive events. By the multiplicative law of probability, it follows that

\[
\begin{align*}
P(F \cap R) &= P(R) P(F|R) = (0.4)(0.7) = 0.28 \\
P(F \cap D) &= P(D) P(F|D) = (0.6)(0.8) = 0.48.
\end{align*}
\]

Therefore,

\[P(F) = 0.28 + 0.48 = 0.76. \quad \blacksquare \]

Example 2. The birthdays of 20 randomly selected persons were recorded. The probability is 0.5886 that each person has a different birthday. What is the probability that at least one pair of individuals share a birthday?

Solution. Define the events \(A \) and \(B \) as follows:

\[
A : \quad \text{Each person has a different birthday.} \\
B : \quad \text{At least one pair of individuals share a birthday.}
\]

Then event \(B \) is the set of all sample points in the sample space \(S \) that are not in \(A \), that is, \(B = \overline{A} \). Therefore, by the complementary law of probability, we have

\[P(B) = 1 - P(A) = 1 - 0.5886 = 0.4114. \quad \blacksquare\]

Example 3. Two applicants are randomly selected from among five who have applied for a job. Find the probability that exactly one of the two best applicants is selected.

Solution. Define the following events:

\[
\begin{align*}
A & : \quad \text{Exactly one of the two best applicants is selected.} \\
B & : \quad \text{Draw the best and one of the three poorest applicants.} \\
C & : \quad \text{Draw the second best and one of the three poorest applicants.}
\end{align*}
\]

Clearly, events \(B \) and \(C \) are mutually exclusive and \(A = B \cup C \). Now let \(D_1 = B_1 \cap B_2 \), where

\[
\begin{align*}
B_1 & : \quad \text{Draw the best applicant on the first draw,} \\
B_2 & : \quad \text{Draw one of the three poorest applicants on the second draw,}
\end{align*}
\]

and \(D_2 = B_3 \cap B_4 \), where

\[
\begin{align*}
B_3 & : \quad \text{Draw one of the three poorest applicants on the first draw,} \\
B_4 & : \quad \text{Draw the best applicant on the second draw.}
\end{align*}
\]

Note that \(B = (B_1 \cap B_2) \cup (B_3 \cap B_4) = D_1 \cup D_2 \).
Similarly, let \(G_1 = C_1 \cap C_2 \), where

\[
C_1 : \text{Draw the second best applicant on the first draw},
\]
\[
C_2 : \text{Draw one of the three poorest applicants on the second draw},
\]

and \(G_2 = C_3 \cap C_4 \), where

\[
C_3 : \text{Draw one of the three poorest applicants on the first draw},
\]
\[
C_4 : \text{Draw the second best applicant on the second draw}.
\]

Note that \(C = (C_1 \cap C_2) \cup (C_3 \cap C_4) = G_1 \cup G_2 \).

Note also that \(D_1 \) and \(D_2 \) and \(G_1 \) and \(G_2 \) are pairs of mutually exclusive events and that

\[
A = B_1 \cup C = (D_1 \cup D_2) \cup (G_1 \cup G_2) = D_1 \cup D_2 \cup G_1 \cup G_2
\]
\[
= (B_1 \cap B_2) \cup (B_3 \cap B_4) \cup (C_1 \cap C_2) \cup (C_3 \cap C_4).
\]

Applying the multiplicative law of probability, we have

\[
P(B_1 \cap B_2) = P(B_1) \cdot P(B_2 | B_1) = \frac{1}{5} \cdot \frac{3}{4} = \frac{3}{20},
\]
\[
P(B_3 \cap B_4) = P(B_3) \cdot P(B_4 | B_3) = \frac{3}{5} \cdot \frac{1}{4} = \frac{3}{20},
\]
\[
P(C_1 \cap C_2) = P(C_1) \cdot P(C_2 | C_1) = \frac{1}{5} \cdot \frac{3}{4} = \frac{3}{20},
\]
\[
P(C_3 \cap C_4) = P(C_3) \cdot P(C_4 | C_3) = \frac{3}{5} \cdot \frac{1}{4} = \frac{3}{20}.
\]

Therefore,

\[
P(A) = P(B_1 \cap B_2) + P(B_3 \cap B_4) + P(C_1 \cap C_2) + P(C_3 \cap C_4)
\]
\[
= \frac{3}{20} + \frac{3}{20} + \frac{3}{20} + \frac{3}{20} = \frac{12}{20} = \frac{3}{5}.
\]

Example 4. It is known that a patient with a disease will respond to treatment with probability equal to 0.9. If three patients with the disease are treated and respond independently, find the probability that at least one will respond.

Solution. Define the following events:

\(A \) : At least one of the three patients will respond.
\(B_1 \) : The first patients will not respond.
\(B_2 \) : The second patients will not respond.
\(B_3 \) : The third patients will not respond.

Observe that \(\overline{A} = B_1 \cap B_2 \cap B_3 \). It follows from the complementary law of probability that

\[
P(A) = 1 - P(\overline{A}) = 1 - P(B_1 \cap B_2 \cap B_3).
\]
Repeatedly applying the multiplicative law of probability, we have

\[P(B_1 \cap B_2 \cap B_3) = P(B_1 \cap B_2) P(B_3 \mid B_1 \cap B_2) \]
\[= P(B_1) P(B_2 \mid B_1) P(B_3 \mid B_1 \cap B_2), \]

where, because the events are independent,

\[P(B_2 \mid B_1) = P(B_2) = 0.1 \quad \text{and} \quad P(B_3 \mid B_1 \cap B_2) = P(B_3) = 0.1. \]

Also, \(P(B_1) = 0.1 \). Therefore,

\[P(A) = 1 - (0.1)(0.1)(0.1) = 0.999. \]

Example 5. Observation of a waiting line at a medical clinic indicates the probability that a new arrival will be an emergency case is \(p = 1/6 \). Find the probability that the \(r \)th patient is the first emergency case. (Assume that conditions of arriving patients represent independent events.)

Solution. The experiment consists of watching patient arrivals until the first emergency case appears. Then the sample points for the experiment are

\[E_i : \text{The } i\text{th patient is the first emergency case, for } i = 1, 2, \ldots. \]

Because only one sample point falls in the event of interest,

\[P(\text{rth patient is the first emergency case}) = P(E_r). \]

Now denote by \(A_i \) the event that the \(i \)th arrival is not an emergency case. Then \(E_r \) can be expressed as the intersection as follows:

\[E_r = A_1 \cap A_2 \cap A_3 \cap \cdots \cap A_{r-1} \cap \overline{A}_r. \]

As shown in Example 4, if we repeatedly applying the multiplicative law of probability, we have

\[P(E_r) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 \cap A_2) P(A_3 \mid A_1 \cap A_2 \cap A_3) \]
\[\cdots P(\overline{A}_r \mid A_1 \cap A_2 \cap A_3 \cdots \cap A_{r-1}). \]

Because the events \(A_1, A_2, A_3, \cdots, A_{r-1}, \) and \(\overline{A}_r \) are independent, it follows that

\[P(E_r) = P(A_1) P(A_2) P(A_3) \cdots P(\overline{A}_r) \]
\[= \left(\frac{5}{6} \right)^{r-1} \left(\frac{1}{6} \right) \quad \text{for } r = 1, 2, 3, \ldots. \]
Note that
\[
P(S) = P(E_1) + P(E_2) + P(E_3) + \cdots + P(E_i) + \cdots
\]
\[
= \frac{1}{6} + \left(\frac{5}{6} \right) \left(\frac{1}{6} \right) + \left(\frac{5}{6} \right)^2 \left(\frac{1}{6} \right) + \cdots + \left(\frac{5}{6} \right)^{i-1} \left(\frac{1}{6} \right) + \cdots
\]
\[
= \frac{1}{6} \sum_{i=0}^{\infty} \left(\frac{5}{6} \right)^i = \frac{\frac{1}{6}}{1 - \frac{5}{6}} = 1.
\]
This result follows from the formula for the sum of a geometric series \((a + ar + ar^2 + \cdots + ar^{i-1} + \cdots = \frac{a}{1-r} \text{ if } |r| < 1)\).

Example 6. A monkey is to demonstrate that she recognizes colors by tossing one red, one black, and one white ball into boxes of the same respective colors, one ball to a box. If the monkey has not learned the colors and merely tosses one ball into each box at random, find the probabilities of the following results:

(a) There are no color matches.

(b) There is exactly one color match.

Solution. Define the following events:

\[A_1: \text{A color match occurs in the red box.}\]
\[A_2: \text{A color match occurs in the black box.}\]
\[A_3: \text{A color match occurs in the white box.}\]

There are \(3! = 6\) equally likely ways of randomly tossing the balls into the boxes with one ball in each box. Also, there are only \(2! = 2\) ways of tossing the balls into the boxes if one particular box is required to have a color match. Hence

\[P(A_1) = P(A_2) = P(A_3) = \frac{2}{6} = \frac{1}{3}.
\]

Similarly, it is easy to see that

\[P(A_1 \cap A_2) = P(A_1 \cap A_3) = P(A_2 \cap A_3) = P(A_1 \cap A_2 \cap A_3) = \frac{1}{6}.
\]

(a) Note that

\[P(\text{no color matches}) = 1 - P(\text{at least one color match})
\]
\[= 1 - P(A_1 \cup A_2 \cup A_3)
\]
\[= 1 - [P(A_1) + P(A_2) + P(A_3) - P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3)]
\]
\[= 1 - \left[3 \left(\frac{1}{3} \right) - 3 \left(\frac{1}{6} \right) + \frac{1}{6} \right] = \frac{2}{6} = \frac{1}{3}.
\]
(b) From the graphical demonstration below, it is easy to see that

\[
P \text{(exactly one match)} = P(A_1) + P(A_2) + P(A_3) \\
-2 [P(A_1 \cap A_2) + P(A_1 \cap A_3) + P(A_2 \cap A_3)] \\
+3P(A_1 \cap A_2 \cap A_3) \\
= 3 \left(\frac{1}{3} \right) - 2 \left(3 \frac{1}{6} \right) + 3 \left(\frac{1}{6} \right) = \frac{3}{6} = \frac{1}{2}.
\]

The three shaded regions of the following figure depicts the event that there is exactly one color match.

(Exactly one color match: shaded area)

where the region representing only the red color match is depicted as:
the region representing only the black color match is depicted as:

\[
= A_2 - A_1 \cap A_2 - A_2 \cap A_3 + A_1 \cap A_2 \cap A_3
\]

and the region representing only the white color match is depicted as:

\[
= A_3 - A_1 \cap A_3 - A_2 \cap A_3 + A_1 \cap A_2 \cap A_3
\]